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We propose a method for estimating phase synchronization between time series using the parallel computing
architecture of cellular nonlinear networks �CNN’s�. Applying this method to time series of coupled nonlinear
model systems and to electroencephalographic time series from epilepsy patients, we show that an accurate
approximation of the mean phase coherence R—a bivariate measure for phase synchronization—can be
achieved with CNN’s using polynomial-type templates.
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I. INTRODUCTION

Artificial neural networks �ANN’s� are computational
tools that have found extensive utilization in solving com-
plex real-world problems. The attractiveness of ANN’s
comes from their information-processing characteristics such
as intrinsic nonlinearity, high parallelism, and fault and noise
tolerance. More importantly, neural networks are able to
learn a rule from a set of examples �1� and, after successful
supervised or unsupervised learning, are capable of generali-
zation. For more than a decade ANN’s have been used to
model, to generate, and to predict time series, including cha-
otic ones �see, e.g., �2–9��. Only a few studies �10–13�, how-
ever, report on the use of neural networks to directly estimate
characterizing measures from time series.

Since a conventional �i.e., von Neumann� computer archi-
tecture is not well suited to simulate large-scale neural net-
works, there is need for a special parallel architecture �that
even allows mobile field applications�. CNN is an acronym
for either cellular neural network when used in the context
of brain sciences or cellular nonlinear network when used in
the context of coupled dynamical systems �14,15�. In this
paper we shall use the acronym CNN with the latter mean-
ing. The concept of CNN was developed in 1988 by Chua
and Yang �16,17�. The general idea was to combine the ar-
chitecture of cellular automata and neural networks. Simply
speaking, a CNN is an array of locally coupled nonlinear
electrical circuits or cells which is capable to process a large
amount of information in parallel and in real time. Interac-
tions between the cells of a CNN are only local and usually
translation invariant; i.e., a connection from a cell j toward
another cell i only exists if j is part of i’s neighborhood U�i�
and its type and strength depend only on the relative position
of j with respect to i. Thus the number of connections in-
creases only linearly with the number of cells, a property that
enables hardware realization of CNN �e.g., very-large-scale
integrated implementations �VLSI��, as opposed to other
types of ANN’s.

Processing of information with a dynamical system—such
as CNN—can be considered as an evolution of its initial
state to some desired final state which is regarded as the

result of computation. A CNN is thus programmed by defin-
ing an appropriate interaction pattern �i.e., a connection tem-
plate between cells�, an initial state, and boundary condi-
tions. A number of different approaches have been exploited
in the past to study CNN dynamics �see �18� for an over-
view�. Apart from software simulators that are based on the
numerical integration of a set of ordinary differential equa-
tions, these approaches include digital and mixed digital and
analog �so-called analogic� CNN. A digital CNN consists of
an array of standard digital signal processors or of special-
purpose processors combined with digital memory units. An
analogic CNN consists of an array of analog processing
units, has both analog and digital memory units, and has
already been realized in VLSI �15�. In contrast to digital
CNN’s, analogic CNN implementations provide a much
higher computational performance under equivalent energy
and size requirements. However, the operational range of the
analog circuitry as well as the low tolerance against param-
eter fluctuations restricts the applicability of analogic CNN
and requires a more detailed analysis of the stability of net-
work dynamics. Since both digital and analogic CNN’s pos-
sess memory units, these architectures allow one to realize
stored programmability, which is an essential feature of uni-
versal computation �18�. Thus the CNN paradigm is a uni-
versal Turing machine �so-called CNN universal machine
�CNN-UM�� and therefore includes cellular automata as a
special case. Due to an intrinsic nonlinearity, a variety of
complex phenomena can be simulated on a CNN �e.g., self-
organization, dissipative structures, or chaos; see �15,19� for
an overview�.

Synchronization phenomena in dynamical systems have
attracted much attention in various scientific fields ranging
from physics to the neurosciences �see �20� for an overview�.
Different frameworks for the mathematical description of
synchronization have been developed which have led to the
proposition of different concepts of synchronization. Among
others, the classical concept of phase synchronization was
extended from linear to nonlinear or even chaotic systems for
cases where the definition of a phase variable is possible for
the analyzed systems �21�.

One of the most challenging dynamical systems in nature
is the human brain. Constituted by a complex network of a
huge number of neurons, which introduce nonlinearity to the
system even on a cellular level, the dynamics of this system
has long been a focus of �mostly univariate� linear and non-*Electronic address: klaus.lehnertz@ukb.uni-bonn.de
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linear time series analysis �22–26�. A malfunction of the
brain that is known to be particularly associated with a
pathological neuronal synchronization is the disease epilepsy
along with its cardinal symptom, the epileptic seizure. Led
by a growing interest in the possibility of seizure prediction
�see �27� for an overview�, a number of analysis techniques
have been proposed. It is only recently that bivariate analysis
techniques were repeatedly shown to contribute significantly
to this field.

Following the approach of understanding phase synchro-
nization in a statistical sense �28�, we have developed a
straightforward measure for phase synchronization employ-
ing the circular variance of a phase distribution. We have
termed this measure mean phase coherence R �see �29,30�
and references therein�. In this approach, the phase variable
is obtained from the Hilbert transform of an electroencepha-
lographic �EEG� signal. Recent studies �31,32� show that a
long-lasting �up to hours� preseizure state can be defined
from the temporal evolution of R, which consists of shifts in
synchronization that deviate significantly from the levels ob-
served during the seizure-free interval. The sensitivity and
specificity of this bivariate analysis technique outperform
previously used univariate analysis techniques and appears to
be promising for prospective clinical studies �33�.

Despite its conceptual simplicity �estimation of R between
two time series mainly requires a forward and an inverse fast
Fourier transform�, the required computational resources
grow quadratically with the number of channels to be ana-
lyzed. This limits real-time applications �e.g., in clinical or
neuroscientific settings� to a certain extent. A more efficient
data analysis demands the parallel processing power of
ANN’s. In this study we show that cellular nonlinear net-
works allow a sufficiently accurate approximation of the de-
gree of phase synchronization between two time series. After
a successful optimization of the network, our approach can
in principle be used for the analysis of multichannel data.

This article is organized as follows. In Sec. II A we briefly
recall the definitions for phase synchronization and for the
mean phase coherence R. The methods used to approximate
R with a cellular nonlinear network are presented in Sec.
II B. In Sec. III we show the results of our application to
time series from model systems and to EEG time series from
epilepsy patients, before we draw our conclusions in Sec. IV.

II. METHODS

A. Measuring phase synchronization

Traditionally, phase synchronization is defined as the
locking of the phases � of two oscillating systems a and b
�34�:

�a�t� − �b�t� = const. �1�

As a measure to quantify the degree of phase synchroniza-
tion between two time series, we used the mean phase co-
herence R �29,30� defined as

R = � 1

K
�
j=0

K

ei��a�j�t�−�b�j�t��� = 1 − V , �2�

where 1/�t is the sampling rate of the discrete time series of
length K and V denotes the circular variance of an angular
distribution obtained by transforming the differences in
phase onto the unit circle in the complex plane �35�. By
definition, R is confined to the interval �0,1� where R=1
�V=0� indicates fully synchronized systems.

In order to determine the phases �a�t� and �b�t� of two
signals sa�t� and sb�t�, we followed the analytic signal ap-
proach which renders an unambiguous definition of the so-
called instantaneous phase for an arbitrary signal s�t�:

��t� = arctan
s̃�t�
s�t�

, �3�

where

s̃�t� =
1

�
p�

−�

+� s���
t − �

d� �4�

is the Hilbert transform of the signal �“p” denoting the
Cauchy principal value�. Application of the convolution
theorem turns the last equation into

s̃�t� = − iF−1�F�s�t��sgn���� , �5�

where F denotes Fourier transformation and F−1 inverse
Fourier transformation, respectively.

For the analyses presented in Sec. III we performed three
steps of data preprocessing for each data window prior to the
calculation of the mean phase coherence R. First, the data of
each window were normalized to zero mean, which corre-
sponds to setting the dc Fourier coefficient to zero. Second,
to avoid edge effects, each window was tapered using a co-
sine half-wave �Hanning window� before performing the
Fourier transform. Third, since the calculation of the Hilbert
transform requires integration over infinite time, which can-
not be performed for a window of finite length, 10% of the
calculated instantaneous phase values are discarded on each
side of every window.

B. Estimating phase synchronization
with cellular nonlinear networks

1. General considerations

According to Ref. �15� a CNN is any spatial arrangement
of locally coupled cells, where each cell is a dynamical sys-
tem which has an input, an output, and a state evolving ac-
cording to some prescribed dynamical law. We here consider
a CNN which consists of a two-dimensional M �N homoge-
neous lattice of cells with local nonlinear interactions. The
corresponding state equation for cell �i , j� reads
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d

d�
xi,j��� = − xi,j��� + �

k,l�UA

Ak,l„yi−k,j−l���…

+ �
k,l�UB

Bk,l�ui−k,j−l� + Z , �6�

where xi,j��� denotes the state variable of cell �i , j� and yk,l���
the output variable of cell �k , l� according to

yk,l��� = f�xk,l���� =
2

1 + e−4xk,l��� − 1, �7�

given an external input variable uk,l as well as feedback and
feed-forward template functions Ak,l and Bk,l �with spheres of
influence k , l�UA or �UB�, respectively. Z denotes a global
cell bias. While template function A operates on the outputs
of cell �k , l�, the template function B operates on the external
inputs in the neighborhood of cell �k , l�. Both templates and
the cell bias Z have to be determined �e.g., by some learning
algorithm� to achieve the desired CNN behavior.

2. Network optimization and learning procedures

In order to determine an appropriate CNN with cell out-
puts showing the behavior of the mean phase coherence R,
we performed all simulations using SCNN, a full feature
simulation system �36�. First, the basic CNN structure had to
be determined, which included the network arrangement, the
neighborhood size U, the weight functions Ak,l and Bk,l, and
the output function yk,l���.

For the given time series length K of 4096 data points �see
Sec. III�, we restricted ourselves to a 64�64 network ar-
rangement with a minimum possible 3�3 neighborhood
size. We tested different polynomial-type template functions

Ak,l
�P��z� = �

p=1

P

ak,l
�p�zp, �8�

Bk,l
�Q��z� = �

q=1

Q

bk,l
�q�zq, �9�

of order P and Q �with P=Q� �1,4��, as well as different
boundary conditions. Highest performance was achieved for
polynomial template functions of order P=Q=2 and for the
so-called closed spiral boundary condition where all bound-
ary cells are connected to the other side of the network, but
the connection has an offset of 1 for each row.

Second, in order to present the time series to the network,
we followed Ref. �11� and used a linewise alignment �i.e.,
the rightmost cell in a row is connected to the leftmost cell in
the following row� of the windowed time series, where time
series sa�n�, n=1, . . . ,K, was assigned to the input u and
sb�n� to the state x�0� of the CNN.

Third, in order to train the network we randomly selected
L representative pairs of time series �see Sec. III� along with
their corresponding values of the mean phase coherence R
�see Sec. II A�. Half of these values were taken from the
interval Rlow� �0.25,0.35� and the other half from the inter-
val Rhigh� �0.85,0.95�. The desired output yRef was set to +1
for Rhigh and to −1 for Rlow. After choosing random initial

values for the components of templates A and B and for the
global cell bias Z, the following cost function was minimized
iteratively using the method of simulated annealing �37�:

	 =
1

L
�
l=1

L � 1

4K
�
n=0

N−1

�yl,n��trans� − yl,n
Ref�2	 . �10�

This cost function can be interpreted as the energy E of a
thermodynamic system, which is annealed slowly toward the
global minimum. In each iteration step, 	 is updated and
depending on the present temperature T this exchange is ac-
cepted with probability

p��E,T� = 
e−�E/T, �E 
 0,

1, �E � 0.
� �11�

Exchanges with increasing energy are also accepted with
nonzero probability to allow escaping from local minima. In
our applications we started at an initial temperature of T0
=50, allowed for 300 cooling steps, and assigned 	 the mini-
mum value found after a total of 15 000 iteration steps. Note
that Eq. �10� evaluates all L desired outputs for each iteration
step.

Other minimization procedures �e.g., Powell’s or downhill
simplex �38�� were tested, but did not lead to comparably
accurate results. Following Ref. �10� the training was per-
formed not up to a steady state �i.e., y���⇒y����, but up to
some fixed transient time �trans. For this purpose we inte-
grated Eq. �6� using Euler’s method with a step size of h
=0.2 and 200 integration steps resulting in a transient time
�trans=40. Other integration schemes were tested, but did not
lead to further improvements of accuracy. The approximated
mean phase coherence RCNN is defined as

RCNN = � 1

K
�
k=0

K−1
yk��trans� + 1

2
	�Rmax − Rmin� + Rmin, �12�

where Rmin and Rmax can be chosen either as 0 and 1 or as

0 and �1, respectively, depending on the specific applica-
tion �see Sec. III�.

III. APPLICATIONS

A. Model systems

We studied two diffusively coupled Rössler systems �cf.
�39��:

ẋ1,2 = − �1,2y1,2 − z1,2 + �x2,1 − x1,2� ,

ẏ1,2 = �1,2x1,2 + 0.165y1,2,

ż1,2 = 0.2 + z1,2�x1,2 − 10� , �13�

with a mismatch of the natural frequencies �1=0.89 and
�2=0.85. The coupling is introduced in the last term of the
first equation, where  denotes the coupling strength. The
differential equations were iterated using a fourth-order
Runge-Kutta algorithm �38� with a step size of 0.1. In order
to eliminate transients, the first 103 iterations were discarded.
For � �0.00,0.01,0.02,0.03,0.04 we generated scalar time
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series of the x components each consisting of 116�4096
data points. Time series were split into 116 consecutive over-
lapping windows of length K=4096, where the overlap
amounted to 20% in order to account for the preprocessing
steps defined in Sec. II A. The mean phase coherence R was
then calculated for each of these windows. As training set,
we randomly selected L=16 representative pairs of time se-
ries along with their corresponding R values, proceeded as
described in Sec. II B 2, and obtained 	=0.071.

RCNN values for the test set, which consisted of the re-
maining 100 time series pairs, were then estimated using
Rmin=0 and Rmax=1 �cf. Eq. �12��. From the results shown in
Fig. 1 it can be seen that the CNN allows one to approximate
the mean phase coherence with a sufficient accuracy. Taking
into account the rather limited range of R values used for
training the CNN and the small number of data points the
time series consisted of, we regard the average deviation of
15.5% as sufficiently low, particularly for field applications
aiming to differentiate between strongly and only weakly
synchronized states. Such an application will be presented in
the next section.

B. EEG data

We analyzed quasicontinuous multichannel EEG recorded
from an epilepsy patient over 5 days during which the pa-
tient had ten epileptic seizures of focal origin. The EEG was
measured from electrodes implanted directly within the brain
prior to and independently from the design of this study dur-
ing the presurgical work-up. EEG data were sampled at
200 Hz using a 16-bit analog-to-digital converter and filtered
within a frequency band of 0.5–85 Hz. All ten seizures oc-
curred spontaneously within the second half of the recording.
We here restrict ourselves to the analysis of EEG data from
two sets of pairs �P1 , P2� of recording channels. Previous
studies �33� have shown that the temporal evolution of R
calculated for set P1 exhibited highest seizure prediction per-
formance. Set P2 was taken from the opposite brain hemi-

sphere �homologous sites� and served to study generalization
properties of the CNN. Due to the high amplitude variability
of the EEG, we linearly mapped, as an additional preprocess-
ing step, the amplitude range of �−150,150� mV of the nor-
malized �zero mean� EEG to the CNN range of �−1,1�. R
values were then calculated �see Sec. II A� using a moving-
window technique with 20% overlapping segments of
20.48 s corresponding to K=4096 data points. The number
of R values for each set thus amounted to 23417.

As training set we randomly selected L=16 EEG time
series pairs from set P1 along with their corresponding R
values using criteria defined in Sec. II B 2. These time series
were taken from the seizure-free interval and from the pre-
seizure period. After minimizing Eq. �10� we achieved 	
=0.089. The obtained CNN settings were then used to calcu-
late RCNN values for the test set which consisted of the re-
maining 23416 time series pairs from set P1 using Pmin
=0.3 and Rmax=0.9 �cf. Eq. �12��. These values were chosen
based on the frequency distribution of all R values calculated
for this EEG data set. In Fig. 2 we present the temporal
evolutions of R and RCNN.

Despite the extremely small subset of data used to train
the network �a recording time of about 330 s only�, the over-
all temporal variability of the mean phase coherence is re-
produced with a sufficient quality, the average deviation
amounting to 5.2% only. A more detailed analysis of the
obtained profiles �data not shown here� revealed that a long-
lasting �
60 min� drop in synchronization before the seizure
that deviates significantly from the values observed during
the seizure-free interval could be observed prior to seven out
of the ten seizures. These findings indicate that a differentia-
tion between these states is in principle possible using RCNN,
although the achieved performance might not be sufficient
for all cases. Nevertheless, it should be noted that the CNN
allows a sufficient approximation of R even during and after
the seizure, although we did not use data from these states
for the training.

In order to study further generalization properties of the
network, we used the CNN settings obtained from training
the subset of data from set P1 but calculated RCNN values for
the complete set P2. Figure 3 shows that the overall temporal
variability of the mean phase coherence is reproduced even
better, the average deviation amounting to 0.08% only. This
small error, however, can be in part be attributed to the re-
stricted temporal variability of R found for this set.

IV. CONCLUSION

We have demonstrated the feasibility of cellular nonlinear
networks �CNN’s� to characterize synchronization phenom-
ena in dynamical systems, based on a pair of measured time
series. By applying CNN’s to both time series from coupled
nonlinear model systems and long-lasting EEG recordings
from an epilepsy patient, we have shown that CNN’s with
polynomial-type template functions allow a sufficiently ac-
curate approximation of the mean phase coherence R, an
established measure for phase synchronization in time series
analysis.

At present, our findings are restricted to simulated or digi-
tal realizations of CNN’s, both providing an almost arbitrary

FIG. 1. Means and standard deviations of calculated �rectangles�
and approximated mean phase coherence �triangles� for coupled
Rössler systems using different coupling strengths . �Note that the
standard deviation of the calculated mean phase coherence for 
=0.04 is smaller than the chosen symbol size.�
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precision. For an implementation on analogic CNN’s the
limitations of the analog part—i.e., a limited precision and
the need for polynomial-type templates—have to be taken
into account. Nevertheless, in addition to already existing
polynomial-type analog CNN’s �40,41�, it has been shown
that nonlinear templates can well be approximated by piece-
wise linear functions �42�. Using different optimization strat-
egies, the authors in Refs. 43 and 44 have shown that the
templates and the bias of a CNN can be adjusted in such a
way that the effect of hardware tolerances is minimized.
These optimizations increase tolerance against parameter
fluctuations and lead to a more robust behavior of analogic
CNN’s. More recently, it has been shown that robust tem-
plates, which do not only work on CNN simulators, but also
on hardware implementations can be found using an on-chip
optimization �45�. It can thus be expected that linear or non-

linear templates can be adapted to an existing CNN hardware
chip. The question whether these optimization strategies al-
low an implementation of our phase estimation approach on
analogic CNN’s will be subjected to further research. Never-
theless, the generalization properties and the high computa-
tional performance of CNN’s along with the small energy
and space requirements render CNN attractive for future
VLSI implementations which may even lead to the develop-
ment of miniaturized analysis systems.

Although the EEG database used in this study was from a
single patient, the achieved results can be regarded as prom-
ising. Further evaluations on a larger EEG database are cur-
rently underway. It would also be interesting to extend this
work to other bivariate measures that have been successfully
applied to characterize brain dynamics, such as mutual infor-
mation �46� or nonlinear interdependences �47�.
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FIG. 2. Calculated �top� and approximated �bottom� mean phase
coherence for set P1. The gray line in the lower part of the figure
indicates the point-by-point difference between R and RCNN.
Seizures are marked by vertical lines. Profiles are smoothed using a
ten-point moving-average filter for better visualization. Twice the
patient was briefly �13 and 54 min� disconnected from the EEG
acquisition system. A longer discontinuity �340 min� was necessary
to carry out a magnetic resonance imaging scan to determine the
exact location of the implanted electrodes.

FIG. 3. Same as Figure 2 but for set P2.
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